Interaction of Architecture and Algorithm
in the Domain-based Parallelization of an
Unstructured Grid Incompressible Flow Code

Dinesh K. Kaushik & David E. Keyes
CS Department, Old Dominion University &
ICASE, NASA Langley Research Center

Barry F. Smith
MCS Division, Argonne National Laboratory

Organization of Presentation

e Issues for unstructured grid domain decomposition methods
e Background of FUN3D

e Background of PETSc

e [llustrations of general porting issues

e Summary of serial and parallel performance

e Conclusions

Solving Unstructured Grid Problems in Parallel:
Main Issues

e SPMD parallelization of unstructured grid solvers is complicated by
the fact that no two interprocessor data dependency patterns are alike

e The user-provided global ordering may be incompatible with the
subdomain-contiguous ordering required for high performance and
convenient SPMD coding

e Loss of regularity in unstructured grid solvers makes them more
memory and integer-op intensive; nevertheless, a library-based
solver should be competitive in serial with a legacy solver in terms
of memory and execution time

Implications of the Memory Hierarchy
on Computational Efficiency

e Storage/use patterns should follow memory hierarchy

— Blocks for Registers
block storage format for multicomponent systems — saves CPU

cycles
— Interlaced Data Structures for Cache
choose
ul,vl,wl, pl,u2,v2, w2, p2,...
in place of

ul,u2,...,v1L,v2,...,wl,w2,...,pl,p2, ...

— Subdomains for Distributed Memory
“chunky” domain decomposition for optimal surface-to-volume
(communication-to-computation) ratio

e This hierarchy is concerned with different issues than the algorith-
mic efficiency issues associated with hierarchies of grids

Optimal Granularity of Decomposition

For cache-based microprocessors, granularity is determined by three
forces:

e Convergence Rate
usually deteriorates with increased granularity

e Communication Volume
increases with increased granularity

e Size of Local Working Set
fits better into successively smaller cache levels with increased gran-
ularity

Description of the Legacy Code - FUN3D

e FUN3D is a tetrahedral vertex-centered unstructured grid code devel-
oped by W. K. Anderson (LaRC) for compressible and incompressible
Euler and Navier-Stokes equations

e Parallel experience is with incompressible Euler so far, but nothing in
the algorithms or software changes for the other cases; only conver-
gence rate will vary with conditioning, as determined by Mach and
Reynolds numbers (and mesh)

e FUN3D uses 1st- or 2nd-order Roe for convection and Galerkin for
diffusion, and false timestepping with backwards Euler for nonlinear
continuation towards steady state

e Solver is Newton-Krylov-Schwarz; timestep is advanced towards in-
finity by the switched evolution/relaxation (SER) heuristic of Van
Leer & Mulder

PETSc —
a Portable Extensible Toolkit for Scientific Computing

e Gives relatively high-level expression to preconditioned iterative lin-
ear solvers, and Newton iterative methods

e Supports complex arithmetic
e Ports wherever MPI ports; committed to progressive MPI tuning

e Permits great flexibility (through object-oriented philosophy) for al-
gorithmic innovation

e Freely available

e Callable from FORTRAN7Y7, C, and C++4; written in C

e Includes diagnostic, monitoring, and visualization GUIs

The PETSc Philosophy

e Library approach — compiler can’t do all; users shouldn’t do all more
than once

e Distributed data structures as fundamental objects — index sets,
vectors, and matrices (gridfunctions coming)

e [terative linear and nonlinear solvers, combinable modularly and re-
cursively, and extensible

e Portable
e Uniform Application Programmer Interface (APT)
e Multi-layered entry

e Message-passing detail suppressed

Conversion of Legacy FUN3D into PETSc/MPI version

e Project begun 10/96, completed 3/97, undergoing continual enhance-
ment

e Five-month (part-time) effort included:

— learning FUN3D and the PUNS3D mesh preprocessor
— learning the MeTiS partitioner
— adding and testing new functionality in PETSc
— restructuring FUN3D from vector to cache orientation
e Approximately 3,300 of 14,400 F77 lines of FUN3D retained (primar-

ily as “node code” for flux and Jacobian evaluations); PETSc solvers
used for the rest

e Eiffort has not yet included:
— Parallel I/O and post-processing

e Next unstructured mesh code port should require significantly less
time

Solving Unstructured Grid Problems in Parallel:
Basic Outline of the Solution Strategy

e Follow the “owner computes” rule under the dual constraints of mini-
mizing the number of messages and overlapping communication with
computation

e Flach processor “ghosts” its stencil dependences in its neighbors
e Ghost nodes ordered after contiguous owned nodes
e Domain mapped from (user) global ordering into local orderings

e Scatter/gather operations created between local sequential vectors
and global distributed vectors, based on runtime connectivity pat-
terns

e Newton-Krylov-Schwarz operations translated into local tasks and
communication tasks (nonblocking for overlap where hardware sup-
ports)

Three Different Orderings - In Focus

12

Application Ordering
13 14

15

10

11

PETSc Ordering
6 7 14 15
4 5 12 13
2 3 10 11
0 1 8 9

Local Ordering for Processor O
6

7 11
4 5
2 3
0 1 8

10

Local Ordering for Processor 1

11 6 7
10
. 5
9
) 3
8 0 1

Scattering Between the Orderings

o After establishing different orderings, establish the “scatter” between
the global and local vectors in the following way :

ISCreateStride (MPI_COMM_SELF,bs*nvertices,0,1,&islocal);
ISCreateBlock(MPI_COMM_SELF,bs,nvertices,svertices,&isglobal);

VecScatterCreate(x,isglobal,user.localX,islocal,&user.scatter);

e Next, before using the local vector in any subroutine, carry out the
scatter operation :

VecScatterBegin(X,localX,INSERT VALUES,SCATTER _FORWARD,scatter) ;
VecScatterEnd(X,localX, INSERT _VALUES,SCATTER_FORWARD,scatter);

Sample Serial Performance Comparison:

PETSc vs. Legacy Code

For both codes
e same optimization level (-O3) was used
e same timer was used
e time measurement started after reading all the input files
e no output was written during timing measurements

e platform used was IBM SP at Argonne with enough memory to avoid
page faults after loading

Execution (s) | Memory (MB)
vert | orignal | PETSc |original | PETSc

2800 122.71| 27.88| 10.22| 12.08
2270012905.30| 381.09| 74.74| 83.67

Percentage difference in memory requirement
reduces with problem size

Sample Memory Conservation Techniques
And Successive Effects in FUN3D Porting History

e Precisely sized preallocation of sparse matrix objects
(77 — 47 MB of RAM)

e Pruning of legacy code solver data structures
(47 — 34 MB of RAM)

e In-place factorization of preconditioner
(34 — 21 MB of RAM)

e Moving “MatSetValues” calls into legacy subroutines
(21 — 16 MB of RAM)

e Making Partitioning Stage Scalable
(16 — 12 MB of RAM)

e Size of legacy code on same problem: 10 MB

e Size of parallel single-node code on same problem: 12 MB

Summary of Parallel Performance on Cray T3E and IBM SP

e 1.4 million degree-of-freedom problem converged to machine precision
in approximately 6 minutes with approximately 1600 flux balance
operations (work units) on 128 processors of a T3E or 80 processor

of an SP
e Relative efficiencies of 75% to 85% over this range

e Algorithmic efficiency (ratio of iteration count of less decomposed
grid to more decomposed grid — using the “best” algorithm for each
processor granularity) is in excess of 90% over this range; iteration
count is only weakly dependent upon granularity

e Implementation efficiency (ratio of the cost per vertex per iteration)
is in excess of 80% over this range and can be superunitary

e Superunitary implementation efficiency derives from improved cache
locality at higher granularity (smaller workingsets on each processor),
in spite of greater nearest neighbor communication volume

e Properly sizing workingset to cache largely overcomes convergence
and communication penalties of concurrency

Cray T3E Scalability — Fixed Size

FUN3D-PETSc M6 Wing Test Case, Incompressible Euler
2nd-order Roe Scheme, 1-layer Halo
Tetrahedral grid of 357,900 vertices (1,431,600 unknowns)

procs |its| exe |speedup | iy | Nimpl | Noverall
16|7712587.95s] 1.00 [1.00]1.00] 1.00
2478 11792.34s| 1.44 10.99/0.97| 0.96
32175(1262.01s| 2.05 |1.03|1.00| 1.03
40|75|1043.55s| 2.48 11.03/0.97| 0.99
48|76 | 885.91s | 2.92 11.01/0.96| 0.97
64|75| 662.06s | 3.91 [1.03/0.95| 0.98
80|78 559.93s | 4.62 [0.99/0.94| 0.92
96 |79 | 491.40s | 5.27 |0.97/0.90| 0.88
12882 382.30s | 6.77 |0.94/0.90| 0.85

85% relative efficiency at 128 nodes

IBM SP Scalability — Fixed Size

FUN3D-PETSc M6 Wing Test Case, Incompressible Euler
2nd-order Roe Scheme, 1-layer Halo
Tetrahedral grid of 357,900 vertices (1,431,600 unknowns)

procs |its| exe |speedup | iy | Nimpl | Noverall
8170(2897.46s] 1.00 [1.00]1.00] 1.00
10|73 12405.66s| 1.20 [0.961.00| 0.96
16|78 11670.67s| 1.73 [0.900.97| 0.87
2017311233.06s| 2.35 |0.96]0.98| 0.94
32|74 797.46s | 3.63 |0.95]/0.96| 0.91
40|75| 672.90s | 4.31 10.93/0.92| 0.86
48|75| 569.94s | 5.08 10.93/0.91| 0.85
64|74 | 437.72s | 6.62 |0.95|0.87| 0.83
80|77 | 386.83s | 7.49 [0.91/0.82| 0.75

75% relative efficiency at 80 nodes

Cray T3E Scalability — Gustafson

FUN3D-PETSc M6 Wing Test Case, Incompressible Euler
2nd-order Roe Scheme, 1-layer Halo
Tetrahedral grid

vert | procs | vert/proc |its| exe |exe/it

357,900 80| 4474 |78]559.93s| 7.18s
53,961 12| 4497 |36]265.72s| 7.38s
9,428 2] 4714 191131.07s| 6.89s

Less than 7% wvariation in performance
over factor of nearly 40 in problem size

Notes on Efficiency

Conflicting definitions of parallel efficiency abound, depending upon two
choices:

e What scaling is to be used as the number of processors is varied?

— overall fixed-size problem
— varying size problem with fixed memory per processor
— varying size problem with fixed work per processor
e What form of the algorithm is to be used as number of processor is
varied?
— reproduce the sequential arithmetic exactly

— adjust parameters to perform best on each given number of pro-
Cessors

Our charts include both overall fixed-size scaling and approximately fixed
memory per processor (Gustafson) scaling

We always adjust the subdomain blocking parameter to match the num-
ber of processors, one subdomain per processor; this causes the number
of iterations to vary

Notes on Efficiency, cont.

Effect of changing-strength preconditioner and effect of parallel overhead
are often separated into algorithmic and implementation factors

e Customary definition of overall efficiency in going from ¢ to p proces-

sors (p > q):

_¢-T(q)

where T'(p) is the overall execution time on p processors (measured)

e Factor T'(p) into I(p), the number of iterations, and C'(p), the average
cost per iteration.

e Algorithmic efficiency is measure of preconditioning quality (mea-
sured):
(9)

Nalg(P|q) = I(p)

e Implementation efficiency is remaining (inferred, not directly measur-
able) factor:

—~

Nimpl(P14) = ——F-5

Footnotes on Scalability Tables

e “its” represents the number of pseudo-transient Newton steps — one
Newton step per timestep, with SER growth in timestep up to a
CFL of 100,000, and with a maximum number (20) of Schwarz-
preconditioned GMRES steps per Newton step with relative tolerance
of 1072

e Convergence defined as a relative reduction in the norm of the steady-
state nonlinear residual by a factor of 1071

e Convergence rate typically degrades slightly as number of processors
is increased, due to introduction of concurrency in preconditioner —
highly partition-dependent

e Implementation efficiency may improve slightly as processors are added,
due to smaller workingsets — better cache residency

e Implementation efficiency ultimately degrades as communication-to-
computation ratio increases

Our View of the “State-of-the-Art”:
Architecture and Programming Environment

e Vector-awareness is out; cache-awareness is in; vector-awareness will
return in subtle ways

e Except for Tera and installed vector base, all near-term large-scale
computers will be based on commodity processors

e HPF and parallel compilers not yet up to performance
e Some useful parallel libraries, like PETSc

e Need for better memory bandwidth to harness the full capability of
future (& current) chips

Our View of the “State-of-the-Art”:
Algorithms

e Explicit time integration is solved problem, except for dynamic mesh
adaptivity

e Implicit methods remain a major challenge:

— Today’s algorithms leave something to be desired in convergence
rate

— All good algorithms have global synchronization

e Data parallelism from domain decomposition is unquestionably the
main source of locality-preserving concurrency, but good smoothers
and preconditioners violate locality

e New forms of algorithmic latency tolerance must be found

e Exotic methods should be considered at ASCI scales

Our View of the “State-of-the-Art”:
Application-Algorithm-Architecture Interaction

e Ripest remaining advances are interdisciplinary
e Application-Algorithm
— Ordering, partitioning, and coarsening must adapt to coefficients

(grid spacing and flow magnitude and direction)

— Trade-offs between pseudo-time iteration, nonlinear iteration, lin-
ear iteration, and preconditioner iteration must be understood and
exploited

e Algorithm-Architecture

— Algorithmicists must think natively in parallel and avoid introduc-
ing unnecessary sequential constraints

— Algorithmicists should inform their choices with what their ma-
chine is good at and what it is bad at

Conclusions

e Hierarchy of domain decomposition should follow distributed memory
hierarchy for computational efficiency

— blocking for registers
gives a factor of 2 in performance for multicomponent systems

— interlaced data structure for cache
reduces execution time by more than a factor of 4

— subdomains for processor memory
migrates the sequential code to SPMD parallelism

e In addition to convergence rate and communication volume,

working set size is another parameter to consider for “preferred”
granularity of domain decomposition

e PETSc ported FUN3D gives nice scalability results (parallel effi-

ciency ranges from 75%—-85%) on two platforms - IBM SP and
Cray T3E

e Library (PETSc) based solver is competitive with the legacy solver

— outperforms by a factor of 9 even in serial mode — percentage
difference in memory reduces with problem size

Reference URLs

e F'UN3D
http://fmad-www.larc.nasa.gov/ wanderso/Fun /fun.html

e PETSc
http://www.mcs.anl.gov/petsc/petsc.html

e Pointers and related papers
http://www.cs.odu.edu/ keyes/keyes.html

